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Abstract. Since the end of last century, ventricular assist devices (blood pumps) became one
of the most common therapeutic instruments for the treatment of cardiac insufficiency, more
than 23 million people are suffering from heart failure worldwide. To this end, computational
fluid dynamics (CFD) is widely used in order to get insight into patient specific blood flow be-
haviour. Despite the fact that a great number of blood pumps are successfully used in practice,
there are still many parameters within the CFD simulation, which face uncertainties due to, for
example, variations in manufacturing processes or patient specific data. This makes uncertainty
quantification an important tool in classical CFD analysis.

We consider the Polynomial Chaos expansion with stochastic Galerkin projection in that
context. It provides a powerful mean of computing the propagation of uncertainties at once by
solution of one single deterministic, and coupled system. A part of the uncertainties we consider
are of geometric type, which model an uncertain angular speed of the rotor segment of the pump.
We adapt the Multiple Reference Frame method to map the rotation to a stationary reference
system and transfer the geometric uncertainty to the Navier-Stokes equations as additional
coriolis and centrifugal forces. We compare numerically a Krylov subspace method with mean
based preconditioning against a multilevel Polynomial Chaos method for the solution of the
governing equations, and verify our results against deterministic reference computations.
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1 INTRODUCTION

Nowadays, medical devices have been undergoing a revolution and high-tech equipments
are used for different purposes among the fields of health care. The innovation in biomedical
devices in last decades grows significantly aiming at safer, more accurate and less invasive
ways to treat patients. In this context, technical blood pumps became one of the most common
therapeutic instruments for the treatment of cardiac insufficiency, e.g., replacing the pumping
functionality of the human heart during surgery [2, 4, 9, 17, 25]. The verification and validation
of such a device by numerical simulation is very difficult as it requires knowledge about various
model parameters. These often face uncertainties, which may arise for example by variations in
manufacturing processes or in patient specific blood characteristics.

In this paper, we analyse a blood pump model based on the incompressible Navier-Stokes
equations with uncertain geometric and model specific parameters. The geometry is adapted
from a benchmark problem of the U.S. Food and Drug Administration [1]. A part of the pump
consists of a rotor with uncertain speed of rotation. Our goal is to map the geometric uncertainty
to the model equations by making use of the Multiple Reference Frame (MRF) method from
deterministic CFD [3, 6, 11, 13]. Thereby, the flow equations can be considered on a stationary
reference domain, while the rotation is modeled by additional coriolis and centrifugal forces
in the momentum equations. We consider the steady state Navier-Stokes equations for laminar
flow with artificially decreased fluid density for stabilization. Although, in a more realistic
scenario an instationary flow with a high Reynolds number needs to be assumed, our solution
can serve as an initial guess, which significantly can improve convergence in the time-dependent
case. Furthermore, our work provides insight into the use of efficient numerical methods for the
MRF method with Uncertainty Quantification in fluid flow problems.

The spatial part is discretized by the finite element method. Assuming a point wise second
order stochastic solution, spectral methods provide a powerful tool in case of a smooth depen-
dence of the system response on the uncertain parameters. Polynomial Chaos (PC) expansions
[10, 27] express the solution as a series of predefined random functionals without prior informa-
tion on the probability law of the solution. The PC basis functionals are orthogonal multivariate
polynomials in the random input variables whose probability distribution is defined a priori.
The coefficients within the expansion need to be determined computationally. One popular ap-
proach is the use of non-intrusive methods, such as Monte Carlo or sparse-grid collocation [16].
An alternative, yet powerful approach is the stochastic Galerkin projection [10, 15], which we
focus on in this work. It has been successfully applied to fluid flow problems with uncertain
parameters, see e.g. [12, 14, 15, 22, 24]. The governing equations are projected on the space
spanned by the Polynomial Chaos basis requiring the solution of a single fully coupled sys-
tem. However, for that case the development of efficient preconditioners and solvers is a big
challenge and is still in its infancy.

The remainder of this paper is structured in the following way. In Section 2 we introduce the
model equations with uncertain parameters and show how the MRF method can be used to map
the geometric uncertainty to the parameter space. Section 3 describes corresponding numerical
solution methods, which we use for the numerical results presented in Section 4. We conclude
this work and provide an outlook on open research questions in Section 5.

2



M. Schick, C. Song, V. Heuveline

2 MODEL EQUATIONS

We consider the incompressible Navier-Stokes equations in steady state formulation using
primitive variables ~u for velocity and p for pressure:

(~u(~x) · ∇)~u(~x)− ν∆~u(~x) +∇p(~x) = 0, ~x ∈ D, (1)
∇ · ~u(~x) = 0, ~x ∈ D, (2)

~u(~x) = ~g(~x), ~x ∈ Γi, (3)
~u(~x) = 0, ~x ∈ Γw ∪ Γr, (4)∫

Γo

ν∇~u(~x) · ~n(~x)− p(~x)~n(~x) d~x = 0. (5)

The flow is considered onD ⊂ R3 with Γi ⊂ ∂D and Γo ⊂ ∂D defining the Dirichlet inflow and
outflow boundary, respectively (compare Figure 1). At Γw ∪ Γr we prescribe no-slip boundary
conditions. ~n denotes the outward unit normal vector on Γo.

The parameters of the flow are the kinematic viscosity ν > 0 and the Dirichlet boundary
condition ~g. Note that (5) is called the variational ”do-nothing” or variational ”free-stream”
boundary condition, since it does not prescribe anything at Γo. It can be derived from a varia-
tional setting of the momentum equation (1). The inflow boundary condition ~g is modelled by
a Poiseuille profile centred at (0, 0), i.e.,

~g(~x) := ~g(x1, x2, 0) := −Umax(1− (x2
1 + x2

2)/L2)~e3, x2
1 + x2

2 ≤ L2, (6)

where ~x := (x1, x2, x3), and ~e3 := (0, 0, 1). L > 0 denotes the radius of the circular inflow
boundary, and Umax > 0 corresponds to the maximum absolute value of the profile in −~e3

direction. The rotor has diameter D = 0.052[m] for which we assume a fixed angular speed
ω > 0 with axis of rotation ~e3. The dynamics of the flow can be characterized by the Reynolds
number Re, defined as

Re :=
ωD2

ν
. (7)

2.1 Multiple reference frame method (MRF)

D

(a) 2d cross section showing a slice of the rotor. (b) 3d surface with cutting plane for (a).

Figure 1: Geometry of the blood pump. The reference domain for the MRF method DR is
highlighted in (a).

A part of the domain D is moving in time due to the rotation of the rotor. Our goal is to map
the rotation to the equations (1)–(5), and solve them on a stationary reference system. To this
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end, we split D into two parts: DI and DR (compare Figure 1). On DI an inertial coordinate
system is used, which does not require any modification to (1)–(5). ForDR we define a reference
velocity ~uR by

~uR = ~u− ω~e3 × ~x, (8)

for ~x ∈ DR. Since the reference domain is stationary, we need to prescribe additional forces in
the momentum equation to take into account the movement of the domain DR. We assume a
time-independent angular speed, i.e., ω̇ = 0. Therefore, including a coriolis force 2ω~e3×~uR(~x)
and a centrifugal force ω2~e3 × ~e3 × ~x in the momentum equation is sufficient (no Euler force
required). The modified equations read:

(~uR(~x) · ∇)~uR(~x) + 2ω~e3 × ~uR(~x) + ω2~e3 × ~e3 × ~x
−ν∆~uR(~x) +∇p(~x) = 0, ~x ∈ DR, (9)

∇ · ~uR(~x) = 0, ~x ∈ DR, (10)

~uR(~x) = ~h(~x), ~x ∈ Γr. (11)

Here, Γr ⊂ ∂DR denotes the boundary on the rotor on which the rotation of the flow is pre-
scribed by a Dirichlet boundary condition (compare Figure 1). Specifically, we define

~h(~x) := ~h(x1, x2, 0) :=

−ωx2

ωx1

0

 = ω~e3 × ~x. (12)

Note that no boundary condition needs to be prescribed at the intersection of DI and DR. The
coupling between these two domains is provided in a natural way, since the reference geometry
is not moving, therefore the associated finite element mesh connects the corresponding degrees
of freedom. T his can be incorporated easily for assembling the stiffness matrix by introducing
marks for each domain and checking their value within the assembly routine to choose the
correct set of equations.

2.2 Uncertainty model

The flow equations are allowed to have three different sources of parametric uncertainty: 1)
the Dirichlet boundary condition ~g, 2) the angular speed ω, and 3) the kinematic viscosity ν.
We model each of them by independent, uniformly distributed random variables ξi ∼ U(−1, 1),
i = 1, 2, 3 such that

~g(x) = ~g0(x) + σ1~g0(x)ξ1, x ∈ Γi (13)
ω = ω0 + σ2ω0ξ2, (14)
ν = ν0 + σ3ν0ξ3. (15)

In order to ensure positivity, we assume that the variation factors σi satisfy 0 < σi < 1 for
i = 1, 2, 3. The mean ~g0 of the Dirichlet boundary condition is defined as the Poiseuille profile
introduced in (6). We combine the random variables in one random vector ξ := (ξ1, ξ2, ξ3). By
using ξ we actually map an abstract probability space (Ω,A,P) with sample space Ω, sigma-
algebra A ⊆ 2Ω, and probability measure P to the subset Ξ ⊆ R3, which along with the
probability distribution of ξ and a corresponding Borel set also defines a probability space. We
therefore do not need to pose our problem in terms of Ω, we rather can express all stochastic
quantities in terms of ξ. Note that this results in an additional explicit dependence of the velocity
and pressure variables on ξ.
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2.3 Stochastic Galerkin projection

We employ a Polynomial Chaos (PC) expansion for the velocity and pressure components
of the flow [28, 29]. Specifically, we expand these quantities in terms of an infinite series using
orthogonal polynomials in ξ:

~u(~x, ξ) =
∞∑
i=0

~ui(~x)ψi(ξ), p(~x, ξ) =
∞∑
i=0

pi(~x)ψi(ξ), (16)

where we assume that ~u and p are square-integrable with respect to ξ point wise in ~x, i.e.,
~u(~x), p(~x) ∈ L2(Ξ). {ψi}∞i=0 denote the Chaos Polynomials, which in our case correspond to
normalized Legendre Polynomials. These are orthogonal with respect to the constant probabil-
ity density function of ξ, i.e., ∫

[−1,1]3
ψi(ξ)ψj(ξ)

1

23
dξ = δij, (17)

where δij denotes the Kronecker delta function, i.e., δij = 0, if i 6= j, δii = 1 otherwise. Since
infinite sums are not feasible for numerical computation a truncation is employed by prescribing
a maximum total polynomial degree d ∈ N such that

~u(~x, ξ) ≈
P∑
i=0

~ui(~x)ψi(ξ), p(~x, ξ) ≈
P∑
i=0

pi(~x)ψi(ξ), (18)

where P + 1 = (d+ 3)!/(d!3!). For a convergence analysis regarding the classical formulation
of Polynomial Chaos in the Gaussian case see [5]. The generalized case is treated in [8].

We discretize the stochastic space by the stochastic Galerkin projection, see for example
[15]. We illustrate the procedure on the set of equations (9)–(11) on the reference domain.
In a similar way, the same procedure can be applied to the system (1)–(5) as well. First, the
truncated PC expansions are inserted into the equations (9)–(11), resulting in:

P∑
i,j=0

(~uR,i · ∇)~uR,jψiψj +
P∑

i,j=0

2ωi~e3 × ~uR,jψiψj

+
P∑

i,j=0

ωiωj~e3 × ~e3 × ~xψiψj −
P∑

i,j=0

νi∆~uR,jψiψj +
P∑
i=0

∇piψi = 0, (19)

P∑
i=0

∇ · ~uR,iψi = 0, (20)

P∑
i=0

~uR,iψi = (ω0ψ0 + ω2ψ2)~e3 × ~x, (21)

where we stopped noting the dependence of the velocity and pressure components on ~x and ξ
for notational convenience. We artificially define

ωi := 0, i 6= 0, 2, ω2 := σ2ω0, νi := 0, i 6= 0, 3, ν3 := σ3ν0 (22)

for ease of illustration. Note that by definition we have ψ0(ξ) = 1, ψ1(ξ) = ξ1, ψ2(ξ) = ξ2, and
ψ3(ξ) = ξ3. Now the resulting system gets multiplied by some ψk, k = 0, . . . , P , and the L2
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inner product on L2(Ξ) denoted by 〈·, ·〉 is taken on the equations. Using the orthogonality of
the polynomials we arrive at the discretized system:

P∑
i,j=0

(~uR,i · ∇)~uR,jcijk +
P∑

i,j=0

2ωi~e3 × ~uR,jcijk

+
P∑

i,j=0

ωiωj~e3 × ~e3 × ~xcijk −
P∑

i,j=0

νi∆~uR,jcijk +∇pk = 0, ~x ∈ DR (23)

∇ · ~uR,k = 0, ~x ∈ DR (24)
~uR,k = ωk~e3 × ~x, ~x ∈ Γr (25)

for k = 0, . . . , P , and cijk := 〈ψiψj, ψk〉.
In summary, the following set of equations need to be solved on DI and DR, respectively:

P∑
i,j=0

(~ui · ∇)~ujcijk −
P∑

i,j=0

νi∆~ujcijk +∇pk = 0, ~x ∈ DI (26)

∇ · ~uk = 0, ~x ∈ DI (27)
~uk = 〈~g(x), ψk〉, ~x ∈ Γi (28)

~uk(~x) = 0, ~x ∈ Γw, (29)
P∑

i,j=0

∫
Γo

νi∇~uj(~x) · ~n(~x)cijk − pk(~x)~n(~x) d~x = 0. (30)

P∑
i,j=0

(~ui · ∇)~ujcijk +
P∑

i,j=0

2ωi~e3 × ~ujcijk

+
P∑

i,j=0

ωiωj~e3 × ~e3 × ~xcijk −
P∑

i,j=0

νi∆~ujcijk +∇pk = 0, ~x ∈ DR (31)

∇ · ~uk = 0, ~x ∈ DR (32)
~uk = ωk~e3 × ~x, ~x ∈ Γr, (33)

for k = 0, . . . , P . Note that since the equations are posed on a stationary reference system,
we do not need to distinguish between reference variables ~uR, pR and inertial variables u, p in
equations (26)–(33). We continue with a brief discussion of our used solvers in the following
section.

3 NUMERICAL METHODS

The quadratic non-linearity in the convective term of the momentum equations (26) and (31)
is linearised using Newton’s method. In each Newton iteration a linear system needs to be
solved for ~u and p given some linearisation point ~v and q. The corresponding momentum and
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mass equations read:
P∑

i,j=0

(~uj · ∇)~vicijk +
P∑

i,j=0

(~vi · ∇)~ujcijk −
P∑

i,j=0

νi∆~ujcijk +∇pk = −r(~v, q), ~x ∈ DI , (34)

P∑
i,j=0

(~uj · ∇)~vicijk +
P∑

i,j=0

(~vi · ∇)~ujcijk

+
P∑

i,j=0

2ωi~e3 × ~ujcijk −
P∑

i,j=0

νi∆~ujcijk +∇pk = −r(~v, q), ~x ∈ DR, (35)

∇ · ~uk = −∇ · ~vk, ~x ∈ D, (36)

where the momentum residual r(~v, q) is defined as the evaluation of (26) and (31) at the velocity
~v and pressure q given by the Newton iteration. The next Newton iterates, say ~unew and pnew
are given by ~unew := ~v + ~u, pnew := q + p.

The spatial part of equations (34)–(36) is discretized by the finite element method using
Lagrangian Taylor-Hood elements of degree two and one for the velocity and pressure PC co-
efficients, respectively [26].

3.1 Mean based preconditioner

After discretization of the spatial part, we obtain a linear system of equations for the Newton
system (34)–(36). We use a Krylov subspace method to compute its solution. Specifically, we
employ the generalized minimal residual method (GMRES [21]). Choosing a good precondi-
tioner is crucial to speed up the convergence of GMRES. In [18, 19] a mean based precondi-
tioner has been analysed, which is effective if the stochastic variations σi, i = 1, 2, 3 do not
become too large.

The stiffness matrix A(~v) ∈ R(P+1)N,(P+1)N associated to a finite-element discretization
using N degrees of freedom of equations (34)–(36) at linearisation point ~v can be written in
terms of the Kronecker product:

A(~v) =
P∑
i=0

Gi ⊗ Ai(~v), (37)

where Ai(~v) ∈ RN,N , i = 0, . . . , P denote the Kronecker factors and Gi ∈ RP+1,P+1, i =
0, . . . , P denote the stochastic Galerkin matrices defined by (Gi)j,k := cijk. The Kronecker
factors Ai(~v) can be extracted from equations (34)–(36). A Kronecker factor Ai(~v) corresponds
to the finite element discretization of:

(~u · ∇)~vi + (~vi · ∇)~u− νi∆~u+∇p, ~x ∈ DI , (38)
(~u · ∇)~vi + (~vi · ∇)~u+ 2ωi~e3 × ~u− νi∆~u+∇p, ~x ∈ DR, (39)

∇ · ~u, ~x ∈ D, (40)

where ~u and p represent deterministic velocity and pressure variables associated to Ai(~v) =
Ai(~vi). The mean based preconditioner B is then defined as

B := I ⊗ A0(~v) = I ⊗ A0(~v0), (41)

which has the attractive feature that it is block-diagonal and therefore applicable in a decoupled
way with respect to the stochastic space. This gives a natural parallelism in the preconditioning
step.
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3.2 Multilevel method

As an alternative to using Krylov subspace methods for solving the linear system of equa-
tions for the Newton system (34)–(36) we consider a multilevel approach, which is inspired
by multigrid algorithms for deterministic problems. It has already been successfully applied to
elliptic equations with random parameters in [20, 23].

The Polynomial Chaos expansion presents a natural hierarchy with respect to the total poly-
nomial degree. Let Sd denote the space spanned by the Chaos Polynomials up to the total degree
d ∈ N, i.e.,

Sd := span{ψ0, . . . , ψPd
}, (42)

with Pd + 1 = (d+M)!/(d!M !), where M denotes the dimension of ξ, i.e., in our case M = 3.
We can express the hierarchy by a nested sequence of spaces

S0 ⊆ S1 ⊆ · · · ⊆ Sd. (43)

Given some total degree d suppose we can write the spatially discretized Newton step (34)–(36)
in the following way:

Pd∑
i=0

(Gi ⊗ Ai)yd = −bd, (44)

with yd, bd ∈ R(Pd+1)N denoting the solution and residual vector in the Newton system. Here,
we assume N degrees of freedom for the finite element discretization. We stopped noting
the dependence of Ai on the linearisation vector ~v for notational convenience. We can adapt
the idea from deterministic multigrid algorithms to the nested subspace structure given in (42)
with ”grid level” d. To exchange information between different levels, we define a restriction
operatorRd−1 as the L2 projection of Sd onto Sd−1, and a prolongation operator Pd as a natural
inclusion operator from Sd−1 to Sd. As a smoothing operator we employ θ iterations of the mean
based preconditioner, i.e., given an initial iterate yd0 we perform θ iterations of the following
form:

ydk+1 := Bdydk := ydk + (Id ⊗ A0)−1(bd −
Pd∑
i=0

(Gi ⊗ Ai)ydk), (45)

where k is the iteration index, and Id denotes the identity matrix of dimension Pd+1. For d = 0
we obtain the mean problem A0y0 = b0. A brief overview of the multilevel method is provided
in Figure 2. Note that in the multilevel method only solutions to the mean operator A0 need to
be computed if full cycles (down to d = 0) are used.

4 NUMERICAL RESULTS

We use the inexact Newton method for solving the non-linear system in (26)–(33). In contrast
to the classical Newton method, it only requires approximate solutions within each Newton step
in order to obtain convergence. Thereby, we employ the strategy ”choice 1” of Eisenstat and
Walker [7] with initial ”forcing term” equal to 0.5, i.e., the first Newton system needs to be
solved to a relative accuracy of 0.5. The relative accuracy is then decreased for each following
Newton iteration by the ”choice 1” strategy.

For the solution of the linear systems arising in the Newton iterations we employ the GMRES
and Multilevel (ML) method as described in the previous section. Since both methods require
multiple solves with respect to the mean operator A0 – either for the preconditioner in GMRES
or the smoothing operator in ML – we need to define an ”inner” solver for these systems as well.
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1: if (d = 0) then
2: solve A0y0 = b0 (system size N )
3: else
4: yd = Bθdyd (pre-smoothing, θ times)
5: rd := bd −

∑Pd

i=0(Gi ⊗ Ai)yd (compute linear residual on level d)
6: rd−1 = Rd−1rd (restrict residual to level d− 1)
7: for m = 0 to m < µ do
8: ML(cd−1, rd−1, d− 1) (correction computation on level d− 1, µ times)
9: end for

10: cd = Pdcd−1 (prolongate correction to level d)
11: yd = yd + cd (update solution with correction on level d)
12: yd = Bθdyd (post-smoothing, θ times)
13: end if
Figure 2: One cycle of the multilevel method: ML(yd, bd, d) given a vector yd and right hand
side bd on level d. µ = 1 results in a V -cycle, µ = 2 in a W -cycle.

Inflow maximal speed (m/s) 0.55 Inflow speed variation (σ1) 10%
Dynamic viscosity (N · s/m2) 0.0035 Viscosity variation (σ3) 10%
Angular speed (rad/s) 261.8 Angular speed variation (σ2) 10%
RPM 2500 Density (Kg/m3) 1.035

Table 1: Model parameter values.

We again rely on the GMRES method with incomplete LU preconditioning for that case, which
should not be confused with the ”outer” GMRES solver for the stochastic Galerkin system.
SinceA0 omits a saddle point structure, we apply the LU factorization on the upper left diagonal
block of the matrix A0.

Furthermore, we analyse two variants of the ML method, the first one of which solves each
system withA0 to a relative accuracy below 10−12, while the second one uses a relative accuracy
of 10−1. We denote these two variants by MLexact and MLappr, respectively. The relative
error tolerances for the ”outer” solvers, GMRES and ML, are provided by the inexact Newton
method, which itself is iterating until an absolute or relative error is achieved below 10−9.

As described in section 2.2, we consider three independent and uniformly distributed uncer-
tain parameters in our numerical model: the inflow boundary velocity, the kinematic viscosity
and the rotor’s angular speed. Their values and stochastic variation factors are provided in Ta-
ble 1. As defined in section 2 this results in a mean Reynolds number Re ≈ 200. We compare
three different total polynomial degrees (d = 3, d = 4 and d = 5) for the PC expansion, which
result in 20, 35 and 56 PC modes for the velocity and pressure variables, respectively. The dis-
cretization of the spatial component is done by Lagrangian finite elements with degree 2 for the
velocity and degree 1 for the pressure PC modes. This results in 919,334 degrees of freedom
per PC mode (for both velocity and pressure) using a finite element mesh with 192,451 cells.

Table 2 provides a comparison of the computational cost associated to each method. We
first compare GMRES with MLexact. Both methods perform similar in terms of number of
iterations, while MLexact demonstrates a slightly more robust convergence behaviour. How-
ever, MLexact requires more solutions to the mean operator A0, more evaluations of residuals
and more iterations in average for the solution of the mean systems associated to A0. The
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Newton iter. (d = 3) Newton iter. (d = 4) Newton iter. (d = 5)
1 2 3 4 1 2 3 1 2 3

GMRES

Niter 1 2 3 - 1 2 3 1 2 3
Nres 2 3 4 - 2 3 4 2 3 4
NA0 23 60 80 - 23 102 140 23 136 224
N iter,A0 706 931 967 - 706 755 933 706 619 893

MLexact

Niter 1 1 1 - 1 1 2 1 1 1
Nres 11 11 11 - 14 14 27 17 17 17
NA0 55 68 67 - 107 139 278 180 251 251
N iter,A0 758 1380 1804 - 715 1307 919 600 1093 1346

MLappr

Niter 1 1 3 2 1 1 3 1 1 1
Nres 11 11 31 21 14 14 40 17 17 33
NA0 57 69 207 138 108 139 417 183 251 502
N iter,A0 63 95 137 338 49 75 107 41 63 102

Table 2: Comparison of 3 different polynomial degrees of the PC expansion. Niter denotes the
number of GMRES iterations or V-cycles, respectively. Nres denotes the number of residual
computations, NA0 denotes the number of systems, which need to be solved with the mean
matrix A0, and N iter,A0 denotes the averaged number of GMRES iterations, which are required
to compute solutions with A0. The average is taken in each Newton iteration over all system
solves associated to A0.

increase in computational effort with respect to the Newton iteration is related to the inexact
Newton approach, which decreases the relative error tolerances in each iteration and therefore
requires more iterations in each Newton step. In contrast, MLappr outperforms both GMRES
and MLexact. Although for d = 3 one additional Newton iteration is required for MLappr, the
dominant computational cost is significantly lower. We measure this cost in terms of Cs, which
is defined as the product of the number of system solves associated to A0 and the average num-
ber of GMRES iterations used for A0, i.e., Cs = NA0N iter,A0 as defined in Table 2. The savings
in computational cost are highlighted in Fig. 3.

Figure4 depicts the mean of the solution for the pressure and velocity. The highest pressure
can be observed in the area of inlet because of the prescribed inflow boundary condition for
the velocity. Within the rotor segment the pressure is varying on both sides due to Coriolis
and centrifugal forces. As expected, the velocity around the blade’s outer edge (near to rim) is
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Figure 3: Comparison of the computational cost of GMRES, MLexact and MLappr.
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Figure 4: Mean of the flow profile and pressure.

much higher than in the area around the hub. Overall, the mean of the flow demonstrates a stable
laminar behaviour, which has been verified with deterministic reference computations. To this
end, we computed the l2 difference between each deterministic reference and the corresponding
stochastic point evaluation of the PC expansion of the stochastic solution at various points in
the stochastic domain. The maximum of these errors was slightly below 10−6 for the case d = 3
with smaller values for larger polynomial degrees of the PC expansion.

In Figure 5 we depict the standard deviation of the velocity components and the pressure
variable. For the pressure, most uncertainty has impact on the inlet part, while for the ~e1 and
~e2 component of the velocity the dominant uncertainty is close to the rim in the rotor domain.
Note that only minor uncertainty can be observed in the outlet part. We expect this to increase
significantly for a higher Reynolds number flow.

5 CONCLUSIONS

We presented a numerical simulation of a bloop pump with uncertain parameters. To this
end, we showed how to adapt the Multiple Reference Frame method to transfer the uncertain
angular speed of the rotor to the governing equations. This enables the use of the stochastic
Galerkin projection with Polynomial Chaos for discretization of the dependence of the flow
profile and pressure on the uncertain parameters.

We focused on a stabilized flow by artificially increasing the kinematic viscosity of the fluid.
This results in a steady state laminar flow regime, which can be used as an initial iterate for
an unsteady simulation for higher Reynolds numbers. We analysed three different numerical
solution methods, GMRES, exact Multilevel and approximate Multilevel. While GMRES dis-
played faster convergence than exact Multilevel, the approximate version clearly outperformed
the other two with significantly less numerical cost. In addition, we verified our results against
deterministic reference solutions, which showed high accuracy even for a third order PC expan-
sion. In principle, the proposed methods can be reused for other stochastic fluid flow problems
as well.

Our current work is focused on the extension of the CFD analysis to the time-dependent case
for higher Reynolds number flows. Although, we employed the stochastic Galerkin projection
in this work, the computed PC expansion of the flow profile and pressure can be evaluated at
any point in the parameter space. Therefore, in the unsteady case both the stochastic Galerkin
projection and non-intrusive methods can reuse the computed solution.
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Figure 5: Standard deviations for the flow profile and pressure.
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